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In this crash course we will give you the basics of formulating a systems biology
model. This is meant as an introduction for the project course TSRT17. This
course is centered around typical, but fairly similar projects. All projects’ mod-
els, are, e.g., implemented as nonlinear ordinary differential equations (ODEs).
ODEs are introduced in Section 2. The model structures are implied by the
physical components and processes in the system. How these parts are for-
mulated mathematically for our type of systems is reviewed in Section 3. In
Section 4 and 5 we describe how these parts are quantified and put together.
The fitting of the model is described in Section 6. These are the steps that
will be tested in the first mini-examination (swedish: “dugga”). The remaining
steps, to be tested in the second mini-examination are described in remaining
parts of the chapter. First, however, let us have a look at an example from the
literature.

1 An introductory example

A good way to get a first feeling for what a field is, is to have a look at an
example. Here we will use an example from insulin signalling, for exactly this
purpose: to see what is needed in a systems biology project, and what systems
biology methodologies may provide.

The example is concerned with insulin signalling, and is inspired by the
developments in [4, 1]. Insulin signalling occurs via the insulin receptor (IR).
The IR signalling processes may be inspected experimentally by following the
change in concentration of phosphorylated IR (denoted IR·P), and a typical
time-series is presented as vertical lines (which gives one standard deviation,
with the mean in the middle) in Figure 2. As is clear from the figure, the degree
of phosphorylation increases rapidly upon addition of insulin (100 nM at time
zero), reaches a peak value within the first minute, and then goes down again
and reaches a steady state value after 5-10 minutes. This behaviour is referred
to as an overshoot in the experimental data. These data are one of the three
inputs needed for the methods in a systems biology project (Figure 1).

The second input in Figure 1 is prior knowledge. For the IR sub-system this
includes, for instance, the facts that IR is phosphorylated much more easily after
binding to insulin and that the phosphorylation and dephosphorylation occurs
in several catalysed steps. It is also known that IR may leave the membrane
and enter the cytosol, a process known as internalisation. The internalisation
may also be followed by a return to the membrane, which is known as recycling.

The final type of input in Figure 1 concerns suggested explanations. In sys-
tems biology, an explanation should both be able to quantitatively describe the
experimental data, and do it in a way that does not violate the prior knowledge,
i.e., using a mechanistic model. However, it is important to note that a mech-
anistic model does not have to explicitly include all the mechanisms that are
known to occur. Rather, modelling is often used to achieve a characterisation
of which of these mechanisms that are significantly active, and independently
important, and which mechanisms that are present but not significantly and/or
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Figure 1: The kind of methods reviewed here: for analysis of given explanations
for a given set of experimental data and prior knowledge. Figure taken from [3].
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Figure 2: Experimental data and simulations corresponding to the example in
Section 1. This review deals with methods for a systematic comparisons between
such experimental and simulated data series. The result of these methods is an
evaluation and comparison of the corresponding explanations. Importantly, this
allows for mechanistic insights to be drawn from such experimental data that
would not be obtained without modelling.
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uniquely contributing to the experimentally observed behaviour. For instance,
it is known that there is an ongoing internalisation and recycling, but it is not
known whether these are significantly active already during the first few minutes
in a response to insulin, and it is only the first few minutes that is observed in
the experimental data. Therefore, it is interesting to consider explanations for
these data that contain recycling and then to compare these with corresponding
explanations that do not include the recycling. Examples of two such alternative
suggested explanations are given in Figure 3.

With all inputs established, the methods in this review can be applied to
achieve the outputs displayed in Figure 1. The first phase (Figure 4) checks
whether the given hypothesis may serve as an acceptable explanation to the
data in Figure 2. This phase consists of several sub-step. The first such sub-
step is to translate the graphical drawings in Figure 3 to mathematical models.
This translation is the step that opens up for the systematic, quantitative, and
automatic analysis of many of the properties that are carried out in the re-
maining steps. The second sub-step is to optimize the agreement between the
model and the data, by forming a cost function, and then optimizing over the
parameters. The final sub-step of the first phase is then to evaluate whether
the resulting models are able to describe the experimental observations in a sat-
isfactory manner. This is typically done by evaluating the differences between
the model predictions and the experimental data for all time-points (referred to
as the residuals) and there are several alternatives for how to do this. For the
present example, such an analysis shows that the given explanation with both
internalisation and recycling can not be rejected (Figure 2, red, dash-dotted
line). The analysis also shows that sub-explanations lacking the internalisation
can not display the overshoot at all (green, dashed), and that the resulting
model with internalisation but without recycling can not display an overshoot
with a sufficiently similar shape (blue, solid) [4]. Nevertheless, the hypothesis
with internalisation but without recycling is not completely off, and is therefore
interesting for an alternative type of analysis as well. This type of analysis anal-
yses whether the slightly better model (here, the one with both internalisation
and recycling) is significantly better than a worse one (here, the one without
recycling). After it has been decided whether the models should be rejected
or not, the rejected models feedback to the first step (potentially warranting
reformulations of the model, to see whether that makes them acceptable), and
the non-rejected models pass on to the second phase in Figure 4.

The second phase of the modelling is to evaluate properties of the model,
and especially to look for well-determined properties (which are called core pre-
dictions) that can be tested experimentally. In this case, we could find such a
core prediction for the state x4, which corresponds to IR that has been inter-
nalized and dephosphorylated. The simulated time-series for this state is shown
in Figure 5, and as can be seen the state rises from close to zero, to a value
that lies around 60-70% of the total amount of receptors. The different curves
gives an estimate for the uncertainty of the prediction, and the details of how
this is done in practice is explained below. In any case, this is a value that is
so extreme that it can be tested by an experiment where the membrane-bound
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compartment is separated from the cytosolic compartment. In other words, the
prediction feedbacks to the experimental data gathering step, which will gen-
erate a new set of inputs to the modelling. The modelling process outlined in
Figure 4 is therefore a cycle, which iterates between experimental data gathering
plus re-consideration of the existing biological hypothesis, and a data-analysis
step which provides two types of insights: i) that some of the hypothesis are
insufficient to explain the data, ii) that the non-rejected hypothesis may ex-
plain the data only if certain well-characterised properties are fulfilled. For the
present example, the experimental test of the internalisation prediction showed
that also the internalization hypothesis must be rejected, in favor of even more
complex hypotheses. The current state-of-the-art view of this system is that the
first few minutes of the response to insulin is governed by a negative feedback
from downstream signalling intermediates, and where this feedback is depen-
dent on internalisation, but is not the internalisation in itself. This rather
non-trivial view of the system could not have been obtained without this it-
erative experimental/modelling-approach. In fact, the conclusion required five
such iterations, and these are summarized in Figure 6, and described in more
detail in [1]. Let us now leave this example, and have a look at how the different
steps in the modelling-loop are carried out in practice.

Accepted with core prediction Accepted + rejections
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Figure 3: To the right two of the models for the insulin signalling example in
Section 1 are depicted. The top one includes both internalisation and recycling
after dephosphorylation, but not the lower one. The figure to the left corre-
sponds to an identical way of presenting the same rejection: in terms of core
predictions (Section 8). This way depicts a single model with internalisation and
recycling, where the core prediction shows that the recycling must have a high
(non-zero) rate. x1 and x2 corresponds to unphosphorylated and phosphory-
lated IR, respectively, and x3 and x4 corresponds to internalised phosphorylated
and dephosphorylated IR, respectively.
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Figure 4: The main conclusions that can be drawn from a model-based data
analysis are obtained in two phases. The first phase checks whether the given
hypothesis may serve as explanations to the given data. The second phase looks
for interesting and uniquely identified predictions that can be tested experimen-
tally.
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Figure 5: Time-series for state x4, i.e., the state of IR that has been phospho-
rylated, internalized, dephosphorylated, but not yet recycled to the membrane.
The state is expressed as percent of the total amount of receptors, and as can
be seen, the prediction is that around 60-70% of the receptors end up in this
state after a few minutes of insulin stimulation. The different lines correspond
to simulations with different acceptable parameters, and as can be seen, these
different non-rejectable parameter combinations give different predictions, but
they are still fairly similar. Most importantly, they are all widely different from
the result of the experimental testing, which lies below 5%, and thus leads to
a rejection of the model. This is one of the key predictions in [1], and all such
conclusions are summarized in Figure 6.
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Figure 6: Summary of five loops in the experimental/modelling-cycle from Fig-
ure 4. The columns display different hypotheses, and the rows correspond to
different experiments. The table is taken from [1], and as can be seen, the
first observation (the overshoot in Figure 2) can be explained by all hypotheses
proposed in that paper. Furthermore, the model-based analysis leads to a pre-
diction (concerning the amount of insulin in the medium) that allows for one of
the hypotheses to be rejected. After a number of loops, only one explanation
remains: one that combines downstream signalling with receptor internalisation
in a certain manner. This conclusion could not have been drawn without such
an iterative approach involving both experiments and mathematical modelling.
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2 Nonlinear ordinary differential equations

We will now introduce the basic notations for a system of nonlinear ordinary
differential equations (ODEs). ODEs are a common type of equations used
to describe time-varying processes in as widespread areas as biology, physics,
chemistry, engineering and economics. There are, on the other hand, alternative
choices, and we therefore start by shortly describing some of the details regarding
this choice. The term ’differential’ means that there are derivatives appearing in
the equations, and the term ’ordinary’ means that there only appears derivatives
with respect to time. The equations therefore describe how the state of the
system evolve in time. The state of the system is described by a finite number
of state variables, and there is one equation for each state variable. The term
’nonlinear’ is mostly a historical artifact, and could just as well be left out [23].

Some alternative, and more general, choices would have been partial differ-
ential equations (PDEs) [9], or differential delay equations (DDEs) [7]. Both
these descriptions can be arbitrarily well approximated by an ODE by increas-
ing the number of states. PDEs and DDEs are therefore sometimes referred to
as infinite dimensional ODEs. In this dissertation we do not need such general
descriptions. Another more general equation type would have been the differ-
ential algebraic equations (DAEs) [17], but even though we will encounter some
algebraic constraints, rewritings to ODEs will always be possible. There will
thus not be any need for DAEs either in this dissertation. Some alternative, and
more course, description choices would have been linear ODEs and time-discrete
predictor models [18]. These are inappropriate because they do not reflect the
knowledge about the physical processes in the systems. Yet another choice of
equation type would be stochastic models, e.g., based on the Master Equation
[2]. Such models are actually more correct versions of the ODEs, but for the
systems in this dissertation we are always dealing with so many particles that
the error associated with the ODEs can be neglected. The choice of nonlinear
ODEs is therefore the most natural choice. Some additional reasons for the
choice are related to the fact that there is a strong tradition within the systems
biology community to use ODEs, and that there therefore exists many softwares
and a well-developed theory for their handling.

The state vector in an ODE is assumed to fully describe the system at a
given time-point, t. Let this vector be denoted by x(t), and let the dimension
of x(t) be denoted by n. This is henceforth written as x(t) ∈ R

n, where R

denotes the set of all real numbers. Except for special cases, the explicit time-
dependence will be dropped, and x = x(t). There might exist input signals to
the system that are affecting the system, but which themselves are not affected
by the system. Such signals are referred to as control signals, and they are
denoted u. The vector u is also a function of time, and its value will often
be both known and possible to control in the experiment. Assume that the
other inputs to the system (typically noise and disturbances) are constant, and
included in the parameter vector px. Let the time-derivative of x be denoted
ẋ, and let its relation to the states, parameters and inputs be governed by a
nonlinear, smooth, function f . With these notations the system of differential
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equations is given by
ẋ = f(x, px, u) (1)

Sometimes it will be beneficial to consider the u and px vector together. Let
this pair be denoted µ

µ = (px, u)

Note that µ is a time-varying vector, and that all the time-dependence lies in
u. In an experiment there are certain measurement possibilities, using various
sensors. Let the measured signals be given by the time-varying vector y. Assume
that the sensor values are a function of µ, x, and perhaps some additional
parameters py. Let this functional relationship be described by h

y = h(x, µ, py) (2)

The time when the simulation starts can be given or chosen as part of the
experiment design. Let this start time be denoted t0 and let the state vector
at this time be denoted x(t0). Let x0 be the parameter vector giving the start
values

x(t0) = x0 (3)

In most of the thesis we will have chosen the start time so that it is zero, i.e.,
t0 = 0. In those cases x(0) = x0.

Equation (1), (2), and (3) fully specifies the system, and we now write these
equations together for future reference. To fully specify which vectors are de-
pendent on time, and which are not, the time-dependence is here explicit

ẋ(t) = f(x(t), µ(t)) = f(x(t), px, u(t)) (4a)

y(t) = h(x(t), px, u(t), py) (4b)

x(t0) = x0 (4c)

Notice that equation (4) allows for a unique predicted (simulated) value for
each parameter set (px, py, x0). Collect these parameters in a parameter vector
p

p = (px, py, x0)

To explicitly specify that a given y(t) is simulated, and dependent on a param-
eter p, it is denoted ŷ(t|p). Generally, a mapping from a parameter vector p to
a predicted output ŷ(t|p) is referred to as a model structure, and it is denoted
by M

M : p → ŷM(t|p)

where the superscript is optional, and simply identifies the model structure gen-
erating the simulated output. An equation system of the form (4) describes the
most general model structure when modelled by ODEs. A common objective
in systems biology is to use experimental data to choose, or estimate, the pa-
rameters to have specific values, denoted p̂. This leads to an estimated model

M(p̂). It is thus clear that the formation of a model structure is a central step
in a modelling procedure. We will now see how this is typically done for our
type of models.
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3 Describing the parts

We will now turn our attention to how the building blocks of the models are for-
mulated. In this course the variables of the models will typically correspond to
concentrations, and the processes that affect these concentrations will typically
be reactions and transport processes.

A chemical reaction converts reactants into products. The rate at which the
conversion occurs might also be affected by some modifiers, which are species
not themselves affected by the reaction. Consider a reaction occurring in a single
compartment, with constant volume, temperature, and pH. Let its substrates
be denoted S1, . . . , Si, and let the products be denoted P1, . . . , Pj . The stoi-
chiometric coefficients specifies the relative numbers of reactants and products
that are involved in a reaction. Let these coefficients be denoted ν1, . . . , νi+j .
The reaction can then be written

ν1S1 + · · ·+ νiSi −−⇀↽−− νi+1P1 + · · ·+ νi+jPj (5)

Let the rate at which this reaction occurs be denoted v, and let the kinetic
parameters for this reaction be collected in a vector k. Further, let the concen-
tration of a substance A be denoted [A]. Assume that the rate is dependent on
the concentration of the substrates and products, and on the concentration of
some modifiers denoted M1, . . . , Ml

v = v([S1], . . . , [Si], [P1], . . . , [Pj ], [M1], . . . , [Ml], k) (6)

We will now consider two common rate expressions of this form.

Example 1

The most basic example of a reaction rate is probably the one based on mass
action kinetics. It can be derived from some reasonable physical assumptions
[15], and is a good description of elementary reactions, i.e., reactions which are
not the result of lumping other reactions together. In mass action kinetics, the
rate in each direction is modelled as being proportional to the product of the
substrate concentrations. For a reversible reaction with substrates A and B,
and products C and D

A+ B
kf

−−⇀↽−−
kb

C+D (7)

the rate expression is simply

v = kf [A][B]− kb[C][D] (8)

The parameters kf and kb are the rate constants for the forward and backward
reaction. They were implicitly introduced already by their appearance above
and below the reaction arrow in (7).
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Example 2

Another common rate expression is the irreversible Michaelis-Menten rate ex-
pression with one substrate and one product. The most important difference
between this reaction rate and the mass action rate is that the Michaelis-Menten
version has a saturation. This means that the rate will never exceed a certain
maximum velocity. This rate is given by a parameter denoted Vmax. There
is one more kinetic parameter, denoted KM. It is interpreted as the substrate
concentration for which the rate obtains half of its maximum velocity.

v =
Vmax[S]

KM + [S]
(9)

This, and many other Michaelis-Menten like rate expressions, can be derived
from a system of elementary reactions all described by simple mass-action ki-
netics, plus some assumptions about the relations between their kinetic param-
eters. The principles behind (6) can be used to describe a model’s parts also
under more general circumstances. For reactions occurring in multiple com-
partments and for transport processes the same expressions apply directly. The
compartment that a concentration refers to is then denoted by an index, which
means that [A]j denotes the concentration of A in compartment j. If the com-
partments have different volumes, however, care must be taken when combining
concentrations in a single rate expression. One way is to refer all concentrations
to the same standard volume, and then account for the volume differences when
combining the rate expressions into a model structure (see eq. (11) below). The
kinetic constants are typically functions of pH and temperature, which means
that these functional relations have to be treated in cases where the temperature
and pH are not constant. Finally, even though the mass action and Michaelis-
Menten expressions were originally derived for biochemical reactions, the same
expressions are often used to describe more general transports, reactions and
other processes on other scales, e.g., occurring on the whole-body level.

4 Collecting and selecting a model structure

We will now turn to the problem of collecting descriptions of individual processes
(reactions, transports, etc.) into a complete model structure of the form (4).
This process often involves the creation of an interaction graph. This interaction
graph is then often converted to a stoichiometry matrix, which can be used to
form a model structure of the form (4) through a simple matrix multiplication.

An interaction graph

A simple way to declare which variables and interactions that should be included
in a model is to form an interaction graph. Each node in such a graph represents
either a state xi directly, or a complex entity referred to as an auxiliary. Each
edge in the graph corresponds to an interaction, which typically is a reaction of
the form (6). To indicate modifications, like those from the Mis in (6), one could
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also add uni-directional arcs going from a node to an edge. An example of an
interaction graph is given in Figure 7, and it contains five nodes (A,B,C,D,E),
three edges (v1, v2, v3) and one uni-directional arc (B’s inhibition of v3). This
system is described in more detail in the Example 3 below. Since this represen-

Figure 7: Example of an interaction graph.

tation has abstracted all other information, and since it is easy to visualise, it is
good when defining the scope of the model. Two important types of decisions
when defining the scope of the model are: i) decisions regarding the boundaries
of the model, i.e., the decision of which aspects not to include, and ii) decisions
regarding the complexity level of the different parts. One of the main difficulties
with excluding parts of a system is due to the many feedbacks and interactions
that seem to be present in virtually all biological systems. It is therefore dif-
ficult to find truly isolated sub-systems in biology and one typically has to be
satisfied if a sub-system can be considered as isolated to a good approximation,
at least at the time-scale of interest. Here it is often worthwhile to consider
if there are experimental techniques to eliminate different interactions. In this
way one can sometimes experimentally create an isolated subsystem. The level
of detail at which to describe the processes often has a direct influence on the
number of parameters and variables that will be included in a model. In the
projects appearing in this course, you will see various examples of both detailed
and simplified models.

Another important benefit with the construction of an interaction graph is
that biologists and biochemists are already drawing such graphs when studying
a system, even if they have no intention of building a mathematical model of the
system. It is therefore a convenient way of exchanging information with such
collaborators. For most well-studied systems one can therefore find proposals
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of such graphs, which can be used as starting points for model developments.
For many of the well-characterised metabolic systems one is even taught these
interaction graphs in basic biochemistry courses. Note, however, that biologists
drawing such graphs, may resort to simplified notions, leaving out crucial infor-
mation regarding the reactions (as opposed to the overall flows of information)
present in the system.

Figure 8: Example of an interaction graph showing only the included variables
(here metabolites), and their interactions (here reactions and in- and out-flows).
This interaction graph corresponds to a model of yeast glycolysis [13], and it was
created in the software PathwayLab. When an interaction graph is modelled in
such a software each arrow is ’clickable’, and if all reactions are filled in of the
form (6), the generation of a an ODE model (4a) will be done automatically.
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Because there are all these benefits with constructing a model structure in
the form of an interaction graph, there are several softwares that allow the user
to draw the interaction graph graphically, and to keep that representation also
when including details about the individual reactions. Two examples of such
softwares are CellDesigner [5] and MathModelica (mathcore.com). Another
common alternative for obtaining the model structure (4) from an interaction
graph, is to use the stoichiometry matrix.

The stoichiometry matrix

We will now see how the stoichiometry indexes νi can be used to form a model
structure from an interaction graph and a set of corresponding rate expressions.
Consider an interaction graph of the type described above, and assume that it
only consists of reactions with known stoichiometric coefficients. Assume further
that each variable xi corresponds to the concentration of a substance, and that
all reactions occur in a single compartment. Let νij denote the stoichiometric
coefficient for substance i in reaction j, and distinguish between substrate and
product coefficients by having a negative sign in front of the latter. Collect
these indexes in a matrix N

N =




ν11 ν12 . . .

ν21 ν22
...

...
...

. . .




Collect the reaction rates vi in a vector v

v = (v1, v2, . . . )
T

Then the differential equations corresponding to this interaction graph are found
by the following simple matrix multiplication

ẋ = Nv (10)

There are a number of situations in which it is not as straightforward as in
eq. (10) to construct the model structure out of an interaction graph. This
happens, e.g., if the model contains states that are not easily interpretable as
concentrations (e.g., temperature or pH), if there are processes that are not eas-
ily interpretable as reactions (e.g., cell growth), or if there appear compartments
with different volumes. In this course we will encounter situations with different
volumes, but where the different volumes at least are constant in time. This
allows for a simpler approach than the general one, with time-varying volumes
(see, e.g., [10] for a general treatment).

There are many ways to generalise eq. (10) to the case with several compart-
ments with constant volumes; here we propose a notationally convenient way.
First, each reaction rate is calculated in terms of a standard volume. Let this
standard volume be denoted Vvol,r. Similarly, denote the volume in which xi
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resides by Vvol,i. Construct the following n× n matrix Vvol

Vvol =




Vvol,1/Vvol,r 0 . . . 0

0 Vvol,2/Vvol,r

... 0
... 0

. . . 0
0 0 . . . Vvol,n/Vvol,r




The generalisation of (10) is then given by [13]

Vvolẋ = Nv (11)

An alternative approach is to let the states denote absolute quantities, instead
of concentrations. This means that the fluxes out from one compartment and
into the next will be the same (note that this is not the case when modelling
concentrations belonging to compartments in different volumes). In that case,
the rate constants will, however, be dependent on the involved volumes, and
the values can therefore not as easily be translated from one system to another,
even though the same moulecules are involved.

Formulating a reaction network in the form (10) has many advantages. There
are, e.g., many properties that can be obtained from the N matrix alone. One
can for instance detect the presence of conserved moieties (i.e., constant entities)
by comparing the rank of N , rank(N), with the dimension of x, dim(x). If
rank(N) is less than dim(x) that is evidence that there are conservation laws in
the system, and that the system could actually be described by fewer differential
equations. These conservation laws can also be deduced by analysis of this
matrix, which is done, e.g., by the command SBreducemodel in the Systems
Biology Toolbox for MATLAB [21]. Let us now consider a small example that
contains all the grey-box modelling steps considered so far.

Example 3

Consider the simple system depicted in Figure 7. This system consists of five
metabolites A, B, C, D, and E. A is situated in a compartment with volume
V1 and the other species in a compartment with volume V2. There are three
reactions in the system: v1, v2 and v3. One possible choice of interaction graph
when modelling this system is Figure 7 itself; the metabolites are the nodes and
the reactions are the edges (note that we also have a modifying arc from B to
v3). However, since there is no feedback from the system {D,E} to the system
{A,B,C}, the latter sub-system can be considered in isolation. If possible, it is
usually advantageous to do this kind of model restrictions (see also the discus-
sion about model scope definition above). Assume that the two corresponding
reactions have the following stoichiometry

v1 : A −−⇀↽−− B

v2 : B −−⇀↽−− 2C
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which is equivalent to the following stoichiometric matrix

N =




−1 0
1 −1
0 2




For this matrix we have dim(x) > rank(N), which means that there exists con-
served moieties in the system. Since there are volume differences in the system
it is easiest to handle this after the differential equations have been obtained.
Assume that the reaction rates are formulated in terms of the compartment
with volume V2. Equation (11) then gives the following differential equations

d

dt
[A] = −

V2

V1
v1

d

dt
[B] = v1 − v2

d

dt
[C] = 2v2

It is now easy to see that

d

dt
([A]V1/V2 + [B] + 1/2[C]) = 0

This means that the expression in the bracket is constant over time, and thus a
conserved moiety. Let m denote the constant value of this moiety.

[A]V1/V2 + [B] + 1/2[C] = m (12)

Utilising the conserved moiety the model can be formulated by only two differ-
ential equations, e.g., for A and B. The concentration for C is then calculated
using eq. (12). Assume that the reaction rates for v1 and v2 are described by
simple reaction kinetics, with ki and k−i denoting the forward and backward
rate constant for reaction i, respectively. This gives the following ODEs

d

dt
[A] = −

V2

V1
(k1[A]− k−1[B]) (13a)

d

dt
[B] = (k1[A]− k−1[B])− (k2[B]− k−2[C]) (13b)

[C] = 2(m− [A] ∗ V1/V2 − [B])

By identifying x with ([A],[B]), and px with (V1, V2, k1, k−1, k2, k−2,m) eq. (13)
is found to be of the form (4a). We have thus obtained the non-trivial part
of a model structure for this system. The two remaining equations in (4) are
easily obtained from knowledge about how the measurements relate to the state
variables, and of how the initial values are chosen.
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5 Quantifying the parts

Before the model can be used, e.g., in a simulation, one needs parameter values
for the kinetic expressions (6), and initial values for the variables (4c). One
way to obtain this is to estimate the parameters, by optimizing the agreement
between the model output and the data (see below). An important preparation
to this is to get as many rough estimates as possible. This is often acquired
by analysis of the parts separately, in in vitro experiments, or by a search in
the literature for similar model components which have been used under similar
circumstances.

In vitro measurements

The Latin phrase in vitro means ’in glass’, and an in vitro experiment means
an experiment where a part is studied out of its original context. A common
example is an in vitro study of an enzyme, which means a study that has been
performed on the enzyme outside its normal cellular environment, for instance
in a test tube.

In vitro experiments are important, e.g., because they allow for measure-
ments of more things than is possible in an intact cell. When studying an
enzyme in isolation it is also possible to vary its substrates, co-factors, and pos-
sible allosteric regulators, much more than what is feasible in an intact cell; one
can then also vary these things independently of each other. In this way it is,
e.g., possible to get a mechanistic understanding of what the elementary steps
in the enzymatic conversion are. One may also find evidence of approximate re-
lations (like saturations and quasi-steady state equilibria etc) and by combining
such findings with the elementary reactions, one can derive Michaelis-Menten
like expressions for the enzymatic process.

These expressions are typically similar to that in equation (9), but much
more complicated. As example we give the glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) reaction in the Hynne model [13] which is described by
a reversible Michaelis-Menten expression with two non-competing substrate-
product couples

vGAPDH =
Vmax([GAP][NAD+]− [BPG][NADH]

K8eq
)

K8GAPK8NAD(1 + [GAP]
K8GAP

+ [BPG]
k8BPG

)(1 + [NAD+]
K8NAD

+ [NADH]
K8NADH

)
(14)

Although an expression of this kind contains fewer parameters than the
underlying network of elementary reactions, there are still many unknown pa-
rameters. Note that the process of choosing an appropriate rate expression for
the reaction and obtaining feasible parameter values are often intertwined in
each other, i.e., they are often carried out simultaneously. Note also that some
parts cannot be examined in in vitro experiments. One such example is the
glucose transporter [20], which only functions in the membrane between intact
cells and their environment.
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Note finally that the term in vitro, when referred to on the whole-body level,
means an experiment of an organ or cell type that has been isolated from its

normal environment, i.e., the body.

6 Optimizing and analysing the obtained model

According to the so-called ’biochemical promise’ [24] it should be enough to
take all the steps that has been described up until now, i.e., to characterise and
quantify the different parts (for instance by finding in vitro estimates of the type
(14)) and how they are related (for instance by an interaction graph of the type
in Figure 8), to be able to understand the whole system. A quantitative model
can then be put together, and in principle be simulated as a replica of the whole
system. This promise was tested by Teusink et al. in an article entitled ’Can
yeast glycolysis be understood in terms of in vitro kinetics of the constituent
enzymes? Testing biochemistry’ [24]. Almost all enzymes in glycolysis were then
characterised through in vitro experiments performed at the same well-defined
state. The remaining few characterisations were taken from similar studies in the
literature, and all this was collected into a large system of nonlinear differential
equations. However, when the behaviour of this model was compared with
corresponding in vivo measurements, significant discrepancies were found.

In vivo measurements

The Latin phrase in vivo means ’in life’, and in biology it is used in a corre-
sponding way to the phrase in vitro, mentioned above. That means that an in

vivo experiment measures things relating to an enzyme while still in its natural
cellular environment, or alternatively things related to the response of a cell or
an organ while still contained in the body.

There are of course many advantages with in vivo experiments when desir-
ing to understand living processes. This follows since there are many things
that change when, e.g., an enzyme is taken out of its normal cellular environ-
ment. Examples of important regulating factors for the activity of an enzyme
are pH, temperature, and allosteric regulations. An allosteric regulation of an
enzyme is an interaction with a molecule at another site than the active site to
which the substrate binds. Since one typically does not know all the allosteric
regulations of an enzyme, and especially not the cellular concentrations of the
corresponding regulators, it is almost impossible to keep these allosteric regula-
tions intact in an in vitro experiment. Apart from these unknown effects there
is also the important overall regulation of the system (body/organ/cell) on the
parts (organs/cells/enzymes). Whether this central feature of all living systems
occurs purely through known regulatory mechanisms such as transcription, or
whether there are other mechanisms not yet a part of our scientific paradigm,
is irrelevant, they will all be included in a ’perfect’ in vivo experiment. These
are the major strengths of in vivo measurements.

A major drawback of in vivo experiments is that it is much more difficult
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to measure things. It is also impossible to control most of the concentrations
that appear, and in this way it is difficult to examine, e.g., saturation effects.
The difficulty in perturbing an intact cell also comes from the fact that the
different substances need to penetrate the cellular membrane, and this is often
difficult to do in a desired time-frame. All these things leads to the fact that
in vivo measurements usually are much less informative, i.e., that they contain
less information about the parameters, than in vitro experiments [18]. On the
other hand, one could also argue that things that are not excited in an in

vivo experiment should not be part of the model structure. This, and similar
discussions, are central to modelling, and is also touched upon in relation to the
model evaluation and core predictions sections below.

It should finally be mentioned that some types of in vivo measurements
are more ’perfect’ than others. This has to do with the method by which the
measured signals have been obtained. One can here distinguish between invasive
and non-invasive techniques. Invasive methods are done at the cost of destroying
the cells, while non-invasive methods are made on intact cells. One common
invasive technique is Western blotting, and two common non-invasive methods
are auto-fluorescence after exposure to ordinary light, and nuclear magnetic
resonance (NMR).

6.1 Fitting the model to data

The major conclusion from the Teusink study [24] was that it is not sufficient to
just put together the in vitro characterisations from the parts of such a complex
system as glycolysis, to obtain a model that agrees with the in vivo obser-
vations. When facing a disagreement between a white-box model output and
corresponding in vivo experiments there are two standard options to consider:

• The model structure is wrong

• Some of the given parameter values are wrong

(There are more corresponding explanations in the case of a grey-box model.)
In the first of these cases one must change things in the analytical expressions
in (4a) and/or (4b). This may correspond to a change of the kinetic expression
for some of the reactions, include some more (or less) reactions in the interaction
graph, or add some more (or less) nodes. If one can show that such a modifi-
cation is necessary it is said that the old model structure is rejected, and this
is an important type of understanding that can come from modelling (in some
modelling frameworks, one even says that this is the only type of understanding
that can come from modelling). However, in order to come to this conclusion
one must first test the other option, i.e., whether it is enough to change some
of the model’s parameters.

This was tested in a follow-up study to the Teusink article [24] by Hynne,
Danø and Sørensen [13]. In this work much of the data obtained in the work
by Teusink were re-used and some new data were collected. The new data
were collected at a well-defined operating point situated close to a supercritical

19



Hopf bifurcation [6]. The most important difference between [24] and [13],
however, is that Hynne et al. assumed that there might have been uncertainties
in the in vitro estimations. That assumption means that one should examine
all parameter combinations that lie within the assumed uncertainties, and see
whether some of them can explain the collected in vivo data. In [13] this search
was done using a method denoted ’the direct method’, and it combines a search
using steady state flux analysis leading to a convex search space in terms of
the net velocities, and by using special features that can be utilised only in the
vicinity of a Hopf bifurcation.

A more common search method is to form a cost function, denoted VN ,
which gives a value for each parameter p and time-series, denoted ZN . The
capital ’N’ in the symbol for the cost function and the time-series denotes the
number of time-points at which experiment samples were collected. One way
to form this cost function is to sum the squares of differences between all the
measurements y(t) ∈ ZN and simulated outputs ŷ(t|p). For an experiment with
ny measurement signals this becomes

VN (p, ZN ) =

N∑

i=1

ny∑

j=1

(yj(ti)− ŷj(ti|p))
2

There are many variations of this approach, for instance by adding prior knowl-
edge regarding parameter values or important behaviours as additional terms
to the cost function. In any case the parameter is chosen that lies within the
region of allowed parameter values, denoted Ω, and minimizes the cost function.
A minimization is formalised by the operator min and the arg operator returns
the argument (here: parameter) that solved the minimization problem. With
this minimization the estimated parameter, denoted p̂, is determined by

p̂ = arg min
p

VN (p, ZN ) (15)

and the corresponding model is given by M(p̂). In relation to the core predic-
tions below, we review different global and local search strategies for solving
this minimization problem.

7 Statistical assessment of the quality of the model

We now turn to the problem of evaluating a single hypothesis M with respect
to the given data ZN , in particular whether the agreement between the model
simulations and experimental data is good enough. In other words, we want
to know whether the estimated model should be rejected or not. From the
introduction of M above, an obviously important entity to consider for the
evaluation of M is the difference between the measured and predicted data
points. We denote such a difference e

εM(t, p) := y(t)− ŷM(t, p)
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Figure 9: Agreement between the Hynne model and validation data from a
quenching experiment.

and it is referred to as a residual. Residuals are depicted in Figure 10. If the
residuals are large, and especially if they are large compared to the uncertainty
in the data, the model does not provide a good explanation for the data. The
size of the residuals is tested in a χ2 test, which is presented in Section 7.2 below.
Likewise, if a large majority of the residuals are similar to their neighbours, e.g.,
if the simulations lie on the same side of the experimental data for large parts of
the data set, the model does not explain the data in an optimal way. This latter
property is tested by methods in Section 7.3. The difference between the two
types of tests is illustrated in Figure 10. Tests like the χ2 test, which analyses
the size of the residuals, would typically accept the right part of the data series,
but reject the left one, and correlation-based methods like the whiteness or run
test (Section 7.3), would typically reject the left part, but accept that to the
right.

7.1 The null hypothesis: that the tested model is the

’true’ model

We now turn to a more formal treatment of the subject. A common assumption
in theoretical derivations (e.g., in [18]) is that the data has been generated by
a system that behaves like the chosen model structure for some parameter, p0,
and for some realisation of the noise e(t)

y(ti) = ŷM(ti, p
0) + e(ti) ∀ i ∈ [1, N ] (16)

If the e(t)s are independent, they are sometimes also referred to as the innova-
tions, since they constitute the part of the system that never can be predicted
from past data. It should also be noted that the noise here is assumed to be
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residual

Small but correlated residuals

Uncorrelated but large residuals

simulations

data points

Figure 10: Two sections of experimental data series and simulations. The data
points y are shown with one standard deviation. As can be seen in the first part
(to the left) the simulations lie outside the uncertainty in the data for all data
points. Nevertheless, they lie on both sides of the simulation curve, and with
no obvious correlation. Conversely, the second part of the data series shows a
close agreement between the data and simulations, but all data points lie on
the same side of the simulations. Typically, situations like that to the left are
rejected by a χ2 test but pass a whiteness test, and situations like that to the
right pass a χ2 test but would be rejected by a whiteness test.

additive, and only affecting the measurements. In reality, noise will also appear
in the underlying dynamics, but adding noise to the differential equations is still
unusual in systems biology.

The assumption (16) can also be tested. According to the standard traditions
of testing one can, however, not prove that this, or any, hypothesis is correct,
but only examine whether the hypothesis can be rejected [19, 12]. In a statistical
testing setting, a null hypothesis is formulated. This null hypothesis corresponds
to the tested property being true. The null hypothesis is also associated with
a test entity, T . The value of T depends on the data ZN . If this value is
above a certain threshold, δT , the null hypothesis is rejected, with a given
significance αδ [12]. Such a rejection is a strong statement, since it means
that the tested property with large probability does not hold, which in this
particular case means that the tested hypothesis M is unable to provide a
satisfactory explanation for the data. On the other hand, if T < δT , one simply
says that the test was unable to reject the potential explanation from the given
data, which is a much weaker statement. In particular, one does not claim that
failure to reject the null hypothesis means that it is true, i.e., that M is the
best, or correct, explanation. Nevertheless, passing such a test is a positive
indication of the quality of the model.
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7.2 Testing the size of the residuals - the χ
2 test

With all the notations in place, (16) together with the hypothesis that p0 = p̂
can be re-stated as

εM (tj , p̂) follows the same distribution as e(tj) ∀t ∈ [1, N ] (17)

which is a common null hypothesis. The most obvious thing one can do to
evaluate the residuals is to plot them and to calculate some general statistical
properties, like max and mean values etc. This will give an important intuitive
feeling for the quality of the model, and for whether it is reasonable to expect
that (17) will hold, and that M is a non-rejectable explanation for the data.
However, for given assumptions of the statistical properties of the experimental
noise e(t), it is also possible to construct more formal statistical tests. The
easiest case is the assumption of independent, identically distributed noise terms
following a zero mean normal distribution, e(t) ∈ N(0, σ2(t)). Then, the null
hypothesis implies that each term (y(t)− ŷ(t, p))/σ(t) follows a standard normal
distribution, N(0, 1), and this in turn means that the sum of squares of such
terms should follow a χ2 distribution [11]; this sum is therefore a suitable test
function

Tχ2 =
∑

i,j

(yi(tj)− ŷMi (tj))
2

σ2
i (tj)

∈ χ2(d) (18)

and it is commonly referred to as the χ2 test. The symbol d denotes the degrees
of freedom for the χ2 distribution, and this number deserves some special atten-
tion. In case the test is performed on independent validation data, the residuals
should be truly independent, and d is equal to Nval, the number of data points
in the validation data set, ZN

val [14, 22]. Then the number d is known without
approximation.

A common situation, however, is that one does not have enough data points
to save a separate data set for validation, i.e., that both the parameter esti-
mation and the test are performed on the same set of data, ZN . Then one
might have the problem of over-fitting. For instance, consider a flexible model
structure that potentially could have e = 0 for all data points in the estima-
tion data. For such a model structure, Tχ2 could consequently go to zero, even
though the chosen model might behave very poorly on another data set. This
is the problem of over-fitting, and it is illustrated in Figure 11. In this case, the
residuals cannot be assumed to be independent. In summary, this means that
if ZN

test = ZN
est, one should replace the null hypothesis (17) by (16), and find

another distribution than χ2(Nval) for the χ2 test (18).
If the model structure is linear in the parameters, and all parameters are

identifiable, each parameter that has been fitted to the data can be used to
eliminate one term in (18), i.e. one term (e.g., (y1(t4) − ŷ1(t4))

2/σ2
1(t4)) can

be expressed using the other terms and the parameters. When all parameters
have been used up, the remaining terms are again normally distributed and
independent. This means that the degrees of freedom can then be chosen as

d = N − r where r = dim(p) (19)
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Figure 11: The blue curve is the increasing agreement to estimation data, with
increasing model complexity (i.e., flexibility). The red curve shows that there
comes a point where the agreement with new validation data gets worse. This
is the problem of over-fitting.

This result is exact and holds, at least locally, also for systems which are non-
linear in the parameters, like (4) [14, 22]. Note that this compensation with r is
done for the same reason as why the calculation of variance from a data series
has a minus one in the denominator, if the mean value has been calculated from
the data series as well.

However, equation (19) does not hold for unidentifiable systems, i.e., where
the data is not sufficient to uniquely estimate all parameters. Since virtually
all models in systems biology are unidentifiable, the true degrees of freedom
therefore lies somewhere between N and N − r. A more detailed discussion
regarding this issue can be found in [3].

7.3 Testing the correlation between the residuals

Although the χ2 test (18) is justified by an assumption of independence of the
residuals, it primarily tests the size of the residuals. We will now look at two
other tests that more directly examine the correlation between the residuals.

The first test is referred to as the run test. The number of runs Ru is defined
as the number of sign changes in the sequence of residuals, and it is compared
to the expected number of runs, N/2 (since it is assumed that the mean of
the uncorrelated Gaussian noise is equal to zero) [8]. An assessment of the
significance of the deviation from this number is given by a comparison of

Ru −N/2√
N/2

and the cumulative N(0,1) distribution for large N and a cumulative binomial
distribution for small N [8].
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The second test is referred to as a whiteness test. Its null hypothesis is that
the residuals are uncorrelated. The test is therefore based on the correlation
coefficients R(τ), which are defined as follows

Ri(τ) :=
1

Ni

Ni∑

j=1

ei(tj)ei(tj−τ )

where Ni is the number of data points with index i. Using these coefficients one
may now test the null hypothesis by testing whether the test function Twhite

Twhite :=
N

R(0)2

M∑

τ=1

R(τ)2 ∈ χ2(M)

follows a χ2 distribution [8].

7.4 Tests that compares two models

There exists another important class of methods, which does not test whether
a single model should be rejected based on a poor agreement with the data,
but because another model is signicantly better. One of the most common such
methods is the likelihood ratio test. The test function, Tlr, and the correspond-
ing distribution under standard conditions is given by

Tlr = 2(l1 − l2) ∈ χ2(d1 − d2) (20)

where li is the logarithm of the likelihood function for model Mi(p̂i), and where
di is given by dim(pi) for i = 1, 2. Recall that the likelihood function may
be estimated by the cost function, where the residuals are normalised by the
standard deviation of the noise, just as for the chi-square test.

However, also when using these model comparison tests, one must recall
the fact that these tests are derived based on a number of assumptions which
typically are not fulfilled. For instance, the likelihood ratio test assumes that
the models are nested (that one of the models is a special case of the other), that
one has infinitely many data points, and that the experimental noise is gaussian.
Since such assumptions are virtually never fulfilled, one may sometimes want
to consider more general – but computationally more demanding – approaches,
such as the bootstrap method outlined in [3].

8 Phase II: identification of experimentally testable

core predictions

We have now learned all the sub-steps of Phase I in the modelling loop, outlined
in Figure 4. This means that we have learned to formulate a model from the
given biological hypothesis, to fit the model to data, and to judge whether the
resulting agreement is good enough to be acceptable. Both outcomes of this
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Figure 12: Agreement between the physical model in Eq. 21 and experimental
data. The solid line is the model simulations, and the data points show mean
plus/minus experimental spread. Note that the plotted spread is 400 standard
deviations.

process are interesting. If the model is rejected, this is a strong conclusion,
and a valuable insight: it means that some crucial component is missing in
the model. The rejections therefore feedback to the beginning of the loop, by
forcing the modeller to consider new and modified hypotheses. If it is concluded
from Phase I that the model is not rejected, this is a weaker conclusion (since
it will probably be revised at some point in the future), but it does mean that
the model passes on to Phase II: identification of experimentally testable core
predictions.

8.1 The problem of looking at ordinary simulations for a

single parameter

First it is important to understand why this step is not as easy as it first might
seem. After all, we have already learned to simulate and generate predicted
outputs from the model. Would it not simply be sufficient to take the simulate
the model for the estimated parameters, and look for interesting predictions? To
realize why this is not the case, it might be instructive to compare the situation
in systems biology with the historically more common situation of modelling a
physical system.

In Figure 12 we show the model agreement for one of the more well-known
examples in physics: the black-body heat radiation expression. As can be seen
the agreement between the data and the model is good, and the proposed model

I(λ, T ) =
2hc2

λ5

1

e
hc

λkT − 1
(21)
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is indeed accepted. This model can also be used to look for predictions in a
straightforward manner. However, to realise why this is possible here, but not
in a biological system, one should notice two things:

• The data in this physical example is of a much higher quality. The ex-
perimental spread in the figure is actually 400 standard deviations, which
means that the data is determined to many digits. No biological data is
that good. Furthermore, biological data usually do not allow you to mea-
sure all the interesting states in the model, but usually only a few signals
which corresponds to sums of states multiplied with an unknown scaling
parameter.

• The parameters in the physical model contains only universal constants
like the speed of light (c), and Planck’s and Boltsmann’s constants (h and
k). These few parameters can be determined once and for all, both from
the present data and from other sources. Parameters in a biological model,
however, are many more, and cannot be determined once and for all, but
depend on many conditions, such as species, temperature, pH, and may
even be different from cell to cell, or from day to day.

For these reasons, the parameters in a physical model may be assumed to be
known, or determined with a high accuracy. The parameters in a typical systems
biology model, however, are rarely neither known, or uniquely determined. This
non-uniqueness problem is referred to as unidentifiability, and it is the main rea-
son why it is rarely enough to consider a single simulation for a single parameter
set, to find truly interesting predictions in a systems biology model.

8.2 A core prediction is a uniquely identified part of an

unidentifiable model

We will now introduce two concepts that will allow us to distinguish between
two levels of confidence that we may have in a model prediction. The first
concept is referred to as a beach statement, and the second concept is referred
to as a core prediction

Def: A model prediction that only states its assessment to the level of ”It

might be like this, but it might also be in some other way” is referred to as a

beach statement.

Def: A model prediction that states its assessment on the level of ”This model

property must be fulfilled if the given model should describe the given data” is

referred to as a core prediction.

Let us understand the difference between these two types of predictions by
considering the following little example:

ẋ = −(p1 + p2)x (22)

y = x (23)

As is clear from the section on model construction above, this example describes
a system with one state governed by two processes. These two processes both
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describe a decay, which are governed by the parameters p1 and p2, respectively.
Finally, the state x is directly measured, without any additional scaling param-
eters or other assumed distortions to the measurements. This is a very small
model, with close to ideal measurement assumptions. However, already for this
case it is clear that even in the case of a perfect agreement between the model
and experimental data, and even if the data is obtained without noise and the
model is tested against validation data, the accuracy of all aspects of the model
can not be guaranteed. The problem lies in distinguishing between the two pro-
cesses, governed by the two parameters p1 and p2. Even though the model has
passed all validation tests, predictions concerning the detailed contributions of
these two processes may be arbitrarily wrong, i.e., you have no confidence at
all in such predictions. Such predictions are hence beach statements. However,
predictions concerning the sum of the two parameters, p1+p2, may not be arbi-
trarily wrong, but will be as well-determined as the data is informative (which
depends on how excited the system has been, and what the signal/noise ratio
is). Hence, if the data is informative enough, statements concerning the sum
p1 + p2 therefore qualify as core predictions. Note that we could find such a
well-determined core prediction even though not all aspects of the model could
be uniquely determined.

Finally, in the above example, the problems can be easily detected, but in
more realistic examples, the problems may typically be more hidden. Another
simple, but slightly less obvious example is the case of a model with a saturation,
but where the data is not exposing the saturation in the system. In such cases,
a similar situation appears, and the values of the individual parameters (for
instance Vmax and KM) would correspond to beach statements, but certain
relations between them (for instance Vmax

KM
) would correspond to core predictions.

Note that the problem of non-uniqueness in models is amplified by a high noise
level, by lack of excitation of the system, and by a failure to measure all states
and process directly in the model.

8.3 How to find interesting core predictions in practice

Let us now see how these core predictions can be determined in practice. The
approach we will explain here is outlined in Figure 13, which is an extension
of Figure 4. As can be seen, the lower half of the figure corresponds to Phase
II, and takes the experimental data and an acceptable model from Phase I as
inputs. It then determines not only one acceptable parameter, but all of them,
and then looks for shared properties, which are the same for all such acceptable
parameters. Those shared properties equal the core predictions.

Let us just shortly re-consider the small example above, before we turn to
the issue of carrying this out in practice. We have already understood that
the parameters p1 and p2 may take very different values individually, i.e., that
they are unidentifiable. However, independently of which values the individual
parameters take, the sum of the two parameters would always be (roughly) the
same. The sum would therefore be such a shared property among all acceptable
parameters, and would thus qualify as a core prediction.
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Figure 13: A revised version of the modelling loop in Figure 4. The main point
is that core predictions are obtained by looking for shared properties among the
set of all acceptable parameters.
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Figure 14: The cost function landscape, and the behaviour of a classical global
optimization algorithm such as simulated annealing, which normally tries to
find the global optimum.
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Figure 15: The cost function landscape, and the behaviour of a modified global
optimization algorithm, which seeks to identify a good approximation of the
entire space of acceptable parameters.
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The main challenge is therefore how to determine the set of acceptable pa-
rameters, and how to look for interesting and shared predictions within this
set. To solve the first of these two sub-tasks, let us first have a slightly closer
look at the optimization step introduced already in the model fitting in Phase
I. Then we introduced a cost function V(p), which implies a landscape with p
on the x-axes and each parameter combination being mapped to a single cost
V(p). Such a landscape is depicted in Figure 14, which also depicts the idea of
the global optimization algorithm Simulated Annealing. Simulated Annealing
is global because it is able to search up-hill in the landscape. In the beginning
of the optimization it is searching in parallell places (corresponding to the lit-
tle ’x’s in the figure) and each little ’x’ is able to climb any hill. However, as
the optimization goes by, Simulated Annealing searches more and more locally,
and eventually all ’x’s end up close to the best parameter that has been found.
When we search for core predictions, we have therefore simply modified Simu-
lated Annealing to stop searching downhill when it finds parameters whos cost
is below an acceptable level, and then instead start searching with the aim of
finding as different parameters as possible. This process is outlined in Figure 15,
and it thus results in an approximation of the set of all acceptable parameters.

Once such a point-approximation of the space of acceptable parameters has
been identified, one may essentially proceed as previously: except for the fact
that one now has to simulate the model for the entire point-cloud of accept-
able parameters. In practice, the point-approximation obtained by Simulated
Annealing (or some other optimization method) will be sampled to obtain a
representative sub-set, which implies a number of simulations that lies within
the feasible computer power. One such method is to take the extreme param-
eters in all directions, i.e., the parameter sets which has at least one of the
parameter values as being unusually big or small. This sub-sampling of the
point-approximated space of acceptable parameters is, however, in reality a
sub-problem of its own.

When it comes to examining the simulations for interesting predictions, it
becomes increasingly important to again consider the biology. Recall that all
the modelling steps discussed in this Crash Course are actually only a tool to
analyse the given data, and that all of these different sub-steps has as their
sole purpose to extract as much and as accurate information as is possible from
the given data and prior knowledge. One should therefore look for predictions
that has a clear biological interpretation. Furthermore, the predictions becomes
especially interesting if they are experimentally testable, and if the crucial be-
haviour predicted by the model is expected to be discernible from the collected
data, when comparing the results with competing predictions and/or default
behaviours. Such considerations must be done in close discussion with the bi-
ologists and those who have a wide experience of doing such experiments, and
a deep knowledge concerning what is known and what would be interesting to
know, concerning the studied systems. Even though there is a whole research
field devoted to the topic of model-based experiment design (see e.g. [16]), we
will here end by mentioning that there are three types of reasons one might
have for wanting to do an experiment based on a core-prediction oriented model
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analysis

1. Because a core prediction allows you to check/validate the model

2. If two different models predict two different core predictions, the corre-
sponding experiment would distinguish between them

3. Because a specific part of the model is too uncertain and needs to be
clarified

All of these reasons are valid, but it is important that you know which one
you advocate, and that this is clearly communicated in the final report of the
project.

9 Summary

In this chapter we have introduced some of the most important components
in model-based data-analysis, which is at the heart of systems biology. The
overall goal of this analysis is to extract as much and as accurate information
as is possible from the given data, assumptions, and prior knowledge. There are
several types of insights that might be obtained from such an analysis, but we
have here focused on the two strongest types of conclusions that can be drawn.
These are represented by Phase I and Phase II in Figure 4. Phase I finds out
whether the given hypothesis can serve as a mechanistic explanation to the given
data in a manner which is also consistent with the prior knowledge. Phase
I is carried out by translating the given hypotheses to mathematical models,
by fitting these models to the data by optimizing over the parameter space
using a cost function, and by evaluating the obtained model agreement with
the (ideally: validation) data, which also may be done using statistical tests.
Rejected models are important because they point towards the necessity for non-
included mechanisms and they feedback to the model hypothesis formulation
step. The non-rejected models pass on to Phase II. Phase II is non-trivial in
systems biology, because the parameters can seldom be uniquely determined
from the given data. This non-uniqueness is problematic because it means
that without further analysis, model predictions will only be of the status of a
beach-statement: ”It might be as the model says, but it might also be in some
other way”. It is therefore highly valuable to do a core-prediction analysis,
where one seeks such model properties that must be fulfilled if the given model
should be able to explain the data. Formally, such core-predictions may be
understood as shared properties among all acceptable parameters, and the space
of acceptable parameters may be obtained by the usage of modified versions of
global optimization algorithms such as Simulated Annealing. When looking for
interesting core-predictions, one should also recall to have a close contact with
the biologists, to ensure that the chosen core predictions are both biologically
interesting and experimentally testable. This final step thus feedbacks to the
data collection step again, and the experimental/modelling cycle of Figure 4 is
complete. Note, finally, that each phase in this cycle improves upon the current
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knowledge regarding the system, and that an example where numerous loops
in this cycle has been used to draw non-trivial conclusions regarding insulin
signalling can be found in [1].
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